On the splitting number at Regular Cardinals
نویسندگان
چکیده
Let κ, λ be regular uncountable cardinals such that λ > κ+ is not a successor of a singular cardinal of low cofinality. We construct a generic extension with s(κ) = λ starting from a ground model in which o(κ) = λ and prove that assuming ¬0¶, s(κ) = λ implies that o(κ) ≥ λ in the core model.
منابع مشابه
Splitting Number and the Core Model
We provide a lower bound for the consistency strength of the hypothesis proposed by S. Kamo: ∃κ > א0 s(κ) ≥ κ. 0. Introduction. In [3] ,[10] cardinal invariants on ω are generalized for uncountable regular cardinals and it is shown that some of their properties still hold true for their uncountable counterparts.However,the role of the splitting number s(κ) (for the definition see below) changes...
متن کاملFull Reflection of Stationary Sets at Regular Cardinals
0. Introduction. A stationary subset S of a regular uncountable cardinal κ reflects fully at regular cardinals if for every stationary set T ⊆ κ of higher order consisting of regular cardinals there exists an α ∈ T such that S ∩ α is a stationary subset of α. We prove that the Axiom of Full Reflection which states that every stationary set reflects fully at regular cardinals, together with the ...
متن کاملI. Coherent Sequences
I Coherent Sequences 3 by Stevo Todorcevic 1 The Space of Countable Ordinals . . . . . . . . . . . . . . . . . . 4 2 Subadditive Functions . . . . . . . . . . . . . . . . . . . . . . . . 12 3 Steps and Coherence . . . . . . . . . . . . . . . . . . . . . . . . . 19 4 The Trace and the Square-Bracket Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5 A Square-Bracket Ope...
متن کاملMad families, splitting families and large continuum
Let κ < λ be regular uncountable cardinals. Using a finite support iteration of ccc posets we obtain the consistency of b = a = κ < s = λ. If μ is a measurable cardinal and μ < κ < λ, then using similar techniques we obtain the consistency of b = κ < a = s = λ.
متن کاملOn the Strong Equality between Supercompactness and Strong Compactness
We show that supercompactness and strong compactness can be equivalent even as properties of pairs of regular cardinals. Specifically, we show that if V |= ZFC + GCH is a given model (which in interesting cases contains instances of supercompactness), then there is some cardinal and cofinality preserving generic extension V [G] |= ZFC + GCH in which, (a) (preservation) for κ ≤ λ regular, if V |...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Symb. Log.
دوره 80 شماره
صفحات -
تاریخ انتشار 2015